Liget - irodalom és ökológia

A Liget új, online kiadása a ligetmuhely.com oldalon érhető el.

 

A liget.org 2015 január-tól csak archívumként működik,

minden friss tartalom az új oldalon érhető el.

 

A folyóiratszámok letölthetőek az alábbi címen:

http://ligetmuhely.com/category/liget/mufaj/folyoirat

Tovább a cikkekhez »
 
 
 
2014 / 1   //    «    2    » 
A HAZA MINDEN ELŐTT
Hegedűs Gábor
A Haza minden előtt
esszé
betűméret: nagyobb - kisebb  |  nyomtatási nézet
 
 


Az előző évszázad alaposan megváltoztatta – legalább az európai kultúrkörben – az ember képét a világról és magát az ember világát is. Egy közel 80 éves matematikai eredmény friss megismerése élesen megvilágította számomra e kettő összefüggését.

 

A matematikusok évezredek óta törekszenek arra, hogy jó axiómarendszereket alkossanak. Egy axiómarendszer egyszerű, a többiekből le nem vezethető (független) axiómákkal írja le a tudomány egy részterületét. Első közelítésben jónak akkor nevezhető, ha nincs benne ellentmondás, azaz egy állítással együtt nem vezethető le az ellenkezője is; ugyanakkor az axiómákból felépíthető kérdésekre megadható benne a válasz is (vagyis teljes). Az egyszerűség megítélés kérdése, ezért elvileg nem fontos. A függetlenség hagyományos módon vizsgálható, száz évvel ezelőtt már nem állt az érdeklődés homlokterében. (Korábban évszázadokon át vizsgálták, független-e a párhuzamosok axiómája a geometria többi axiómájától; vö. Bolyai János munkássága.) Akadtak a teljességgel kapcsolatban is nyitott kérdések, de a matematika egésze szempontjából az ellentmondások kizárása volt akkor a legfontosabb.

 

David Hilbert, korának vezető matematikusa – sok egyéb mellett – célul tűzte ki, hogy az axiómarendszereknek, legalább az aritmetika axiómarendszerének az ellentmondásmentes voltát bizonyítsák be saját eszközeivel. Munkatársaival ezen dolgozott az 1930-as königsbergi konferencia előtt is. E konferencián Kurt Gödel bejelentette: bebizonyította, hogy az aritmetika axiómáit tartalmazó axiómarendszerekben saját teljességük nem bizonyítható, majd még abban az évben levezette, hogy saját ellentmondásmentes voltuk sem. Első közelítésben jók így csak nagyon egyszerű axiómarendszerek lehetnek. A teljesség szóba sem jöhet, de mi legyen az ellentmondások kizárásával? Gerhard Gentzen 1936-ban megmutatta, hogyan lehet egy axiómarendszer ellentmondás nélküli voltát bizonyítani (természetesen nem saját axiómáiból, más feltételekkel), és evvel megalapozta a matematika egy új alágát, az ordinális analízist.*

 

Vajon miért ismeretlen Gentzen a bizonyításelmélettel foglalkozók körén kívül? Több évtizedes matematikai munkám után miért csak most találkoztam vele – ahogy a környezetemben levő fiatalabb matematikusok is? Hilbert problémáját és Gödel korszakos jelentőségű tételeit minden matematikus jól ismeri. Lényegtelen volna eredménye? Dehogy! A szerzővel volna baj? Igen, vele nagy baj van!

 

Bár valószínűleg nem volt antiszemita (a háborúig kapcsolatot tartott „nem árja”-ként 33-ban elbocsátott témavezetőjével és jeruzsálemi matematikussal is levelezett), de hagyta sodortatni magát a hazai eseményekkel: SA, NSDAP, hűségeskü Hitlernek, szerződés az SS-szel a V2 programra. A végállomás: letartóztatták Prágában (ott volt egyetemi tanár) 1945. május 7-én, éhen halt a börtönben augusztus 4-én.

 

A szövetségesek fegyverkezését segítő tudósok kiváló emberek, a tengely-hatalmakéi tömeggyilkosok, vagy legalább tömeggyilkosságok társ-tettesei?

 

Gentzen dolgozott, mintha minden a legnagyobb rendben volna, tette, amit a hatalom elvárt. A győztesek a végén megölték. Mit tehetett volna másképp hazája iránti lojalitását megőrizve? Ha otthon maradva más úton jár, több esélye lett volna, hogy tisztes kort ér meg? Volt egyáltalán más út Németországon belül?

 

Werner Heisenberg vezette a német atom-programot, de Teller Ede szerint annyit hibázott, hogy ez a hiba-tömeg nem lehetett a véletlen műve. Amikor a szövetségesek elfogták, ezt még nem lehetett tudni, ma is inkább megalapozott feltételezés, mint tudás. A nemzetközi közösség mindenesetre már régen mentesítette háború alatti szerepe következményeitől.

 

Az világos, hogy a náci diktatúra a német gondolkodók jelentős hányadát üldözte át háborús ellenfeleihez. Történelmietlen kérdés: mi lett volna, ha ezeknek az embereknek a kapacitását saját hatalmi céljaira próbálja hasznosítani (antiszemitizmusa nélkül ez a diktatúra elképzelhetetlen). Hogyan értékeljük a győztes oldal tudósainak fegyveralkotó munkáját, benne a Magyarországról németországi kitérővel elüldözöttekét? A fegyverek felhasználásával kapcsolatos – eltérő – álláspontjukat a háború befejező szakaszában, majd a hidegháború idején?

 

Magyarországon nincs nagy publicitása Neumann János amerikai elnöki tanácsadó preventív atomháborút pártoló véleményének (alapja a német analógia: Hitlert a 30-as évek közepén még csekély véráldozattal meg lehetett volna állítani; a Szovjetuniónak még nincs hidrogénbombája: ha már lesz, akkor sokkal több áldozattal jár majd vele a küzdelem).

 

Mit gondoljunk Izrael bizonyára létező és Irán nyilvánvalóan tervezett atomfegyvereiről, mások ezekkel kapcsolatos álláspontjáról?

 

Andrej Dmitrijevics Szaharov szovjet atomtudós politikusok késztetése nyomán kezdett társadalmi kérdésekkel foglalkozni, és vált tapasztalatai nyomán hazája politikai rendszerének ellenfelévé. Elárulta volna hazáját?

 

Edward Snowden amerikai számítógépes szakember – nem vezető tudós – saját lelkiismeretének engedve vált hazája politikai vezetésének árulójává: nyilvánosságra hozott kémkedési adatokat. Ez hazaárulás volt?

 

Egy régi magyar példa: hazaáruló volt az utolsó magyar nemesi felkelést is szétverő Napóleonhoz propagandistaként csatlakozó, később is vele tartó Batsányi János?

 

A hazájuk vezető politikusaival szembefordulók hazaárulók? Mikor válik bűnné a lojalitás? Hol a határ?

 

Lehet egyáltalán ezekre a kérdésekre jól válaszolni, vagy meg kell elégednünk a kisebb rosszal? Mikor van jó válasz?


 
Kommentek (0)
Szóljon hozzá!

  Név* (kötelező)

  E-mail* (kötelező, de nem jelenik meg)

  Website (nem kötelező)

Tartalom* (kötelező)


A *-gal jelölt mezők és a tartalom rész kötelezőek.

Milyen nap van ma?*
(Ellenőrző kérdés a kéretlen levelek kiszűrésére.)



 
 
Liget.org   »   Folyóirat   »   2014 / 1   »   A Haza minden előtt
 
replica watches
replica watches replica watches replica watches replica watches replica watches replica watches replica watches replica watches replica watches replica watches replica watches replica watches replica watches replica watches replica watches
replica handbags replica handbags replica handbags replica handbags replica handbags replica handbags
70-640 70-640 642-832 1Z0-051 220-701 642-813 70-411 642-447 300-209 300-207 070-294 itexam911